A real number is any number that may be discovered in the actual world. Numbers may be found in many places. Natural numbers are used to count items, rational numbers are used to represent fractions, irrational numbers are used to calculate the square root of a number, and integers are used to measure temperature, among other things. A group of real numbers is formed by these various sorts of numbers.

In the number system, real numbers are just the union of rational and irrational numbers which is denoted by R. All arithmetic operations may be done on these numbers in general, and they can also be represented on a number line. For example, 3, 0, 1.5, 3/2, √5, and so on are real numbers. Imaginary numbers, on the other hand, are un-real numbers that cannot be stated on a number line and are typically employed to represent complex numbers.

In this “Introduction To Real Numbers - Mathematics I” you will learn about the following topics:

1. Introduction To Real Numbers
2. Types of real numbers
3. The absolute value of real numbers
4. Open and close intervals
5. Linear inequality and their graph
6. Mathematical induction.

==== Point to Note ====

This article Introduction To Real Numbers - Mathematics I is contributed by Namrata Chaudhary, a student of Lumbini Engineering College (LEC).

If you like to contribute, you can mail us BCA Notes, BCA Question Collections, BCA Related Information, and Latest Technology Information at [email protected].

See your article appearing on BCA Notes (Pokhara University) main page with your designation and help other BCA Students to excel.